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1. INTRODUCTION

Point mass}beam systems are often used as "rst approximation models for
a variety of structural and machine elements. Hence, one frequently faces the task of
determining the natural frequencies of such systems. Although no unsurmountable
di$culty arises neither in the determination nor in the solution of the exact
frequency equations of these models, there are many situations where more than an
approximate knowledge of just the fundamental frequency is hardly necessary. In
such cases, approximate formulae obtained by using the Rayleigh method are
known to constitute good alternatives. It is, however, also known that the
performance of such formulae closely depend on the choice of the substitutes used
for the mode shapes of the system in question. Rayleigh himself, when considering
the problem of determining the fundamental frequency of a uniform cantilever
beam carrying a tip mass, as an illustrative example of his method [1, V.1, p. 289],
has used the static de#ection curve of the beam acted upon by a concentrated tip
load, as a good estimate of the fundamental mode shape (actually the exact one for
the limiting case of a massless beam), and derived now is the well-known formula

u:S
EI
kl4S
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[(33/140)#c]

, (1)

where EI is the #exural rigidity, l the length, k the mass per unit length of the beam
and c is the ratio of the tip mass to the beam mass. Along the same lines, i.e.,
applying the Rayleigh method in conjunction with the static de#ection curve due to
the e!ect of a concentrated load applied at the location of the point mass,
Timoshenko [2] and others have provided the practising engineers with a series of
useful formulae corresponding to various beam-point mass con"gurations. These
formulae behave fairly accurately in the cases where the inertial e!ect of the point
mass dominates that of the beam, i.e., when the mass ratio c is large and the location
of the point mass is at or near the maximal amplitude point. But they lose their
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accuracy with inc r easing inertial contribution of the beam, because so does the
used mode shape estimate. On the other hand, in the limiting case of a bare beam,
the static de#ection curve due to the e!ect of the beam's own weight is known to
constitute a good estimate for the fundamental mode shape. One may therefore
infer that static de#ection curves corresponding to the combined e!ect of the beam
and point mass weights would constitute better choices for beam}point mass
systems as they would provide a certain #exibility in adapting to the fundamental
mode shapes in a broader range of the mass ratio c and of the point mass location.
This kind of shape estimate was actually applied by Humar [3] to centrally loaded,
simply supported beams and by Low [4] to simply supported, "xed}"xed and
cantilever beams carrying an arbitrarily located point mass, and has favourably
been compared in reference [4] to three other kinds of shape estimates through
a comparison with an existing set of exact solutions. The Rayleigh formulae
obtained in reference [4] were, however, rather unwieldy and the problem of
determining their validity limits remained.

The purpose of the present note is to reconsider this problem for beams with
various classical end conditions and to show that the resulting formulae can be put
in reasonably simple forms in the special cases where the beam is symmetrically
supported. The corresponding exact frequency equation is also given for each case
and the results are compared in a broad range of the relevant parameters so that
a clear idea on the validity limits of the formulae follows.

2. THEORETICAL BACKGROUND

Consider an Euler}Bernouilli beam with unspeci"ed end conditions carrying
a point mass M (Figure 1). Let the lateral motions of the beam points at the left and
right of M be represented by y

1
(u, t); 0)u)a and y

2
(u, t): a)u)1 where

u"x/l and a"a/l. Both y
1

and y
2

have to obey the partial di!erential equation
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Figure 1. Beam}point mass system.
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Assuming harmonic motion of the form

y
i
(u, t)">

i
(u) cosut, i"1, 2, (3)

one obtains the general solution
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cos ju#C

i3
sin h ju#C

i4
cosh ju, i"1, 2 (4)

for the space dependence of the motion, where j is de"ned by

u"S
EI
kl4

j2. (5)

This solution must satisfy two boundary conditions (which may easily be written
once the end conditions be speci"ed) for each end, and the four following matching
conditions:
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(a, t)"0, (6)

where primes denote di!erentiation with respect to u and overdots denote
di!erentiation with respect to t. These conditions constitute, for the eight constants
C

ij
of equation (4), a set of eight homogeneous equations, the solvability condition

of which yields the exact frequency equation of the system in question.
On the other hand, assuming again harmonic motion of form (3) and forming the

ratio of the maximal potential energy to the so-called reference kinetic energy, the
Rayleigh quotient of the system may be written
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with
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, (8)

where c"M/kl (ratio of the point mass to the beam mass) and m is a dummy
variable. As is well known, if good estimates corresponding to the fundamental
mode shape are substituted for >

1
(u) and >

2
(u) into equation (8), the Rayleigh

quotient of equation (7) approaches (from above) the square of the fundamental
frequency, the closeness being warranted by the Rayleigh Principle [1, v.1. p 109]
which states in today's terminology, that the Rayleigh quotient (viewed as
a function of the shape function constraining the motion) is stationary in value
when the shape function equals that of a natural mode. Thus, one has
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3. CASE STUDIES

In this section, exact frequency equations and Rayleigh approximations will be
derived for various beam}point mass systems and their results be compared.

3.1. SIMPLY SUPPORTED BEAM

For a simply supported beam the boundary conditions are y
1
(0, t)"yA

1
(0, t)"

y
2
(1, t)"yA

2
(1, t)"0, which, together with equation (6) yield the frequency equation

2s j sh j#cj (s j sh aj shbj!sh j s aj s bj)"0 (10)

as also given by Lau [5] and OG zkaya et al. [6]. Here b"1!a and the
abbreviations s, c, sh, ch are used for sin, cos, sinh, cosh respectively. As can easily
be veri"ed, this equation reduces, at it should do, to the well-known frequency
equation of a bare simply supported beam when either c"0, a"0 or a"1. On
the other hand, it can easily be shown that the statically de#ected shape of the same
beam acted upon by its own weight and that of the point mass (see for example
reference [7]), is given by

>M
1
(u)"u!2u3#u4#4cbx(1#b)au!u3y

>M
2
(u)"u!2u3#u4#4cax(1#a)b (1!u)!(1!u)3y (11)

to within a constant multiplier. Substituting equation (11) into equation (8) and
performing the necessary calculations, one obtains

j4
R
"3024

1#10cd[1#(1#4c)d]
31#6cdM3[17#4d(13#19d#9d2)]#16cd[8#121d#3(39#140c)d2]N

,

(12)

where d"ab. Substitution of this value of j
R

into equation (9) gives the
approximate Rayleigh formula sought for the fundamental frequency. We note that
equation (12) is equivalent to its counterpart in reference [4]. But a much simpler
form is achieved here by introducing the variable d to replace a, this being
suggested by the very nature of the problem whose symmetry requires
interchangeability of a and b"1!a. Notice that the frequency equation (10) also
re#ects this feature.

In order to check the accuracy of this formula, the j2
R

values calculated from
equation (12) are compared in Table 1 with the exact j2 values found by
numerically solving equation (10), for di!erent values of the parameters c and a.
The j2

RT
values corresponding to the well-known formula due to Timoshenko

[2, p. 39] which, in the terminology of this note gives

j4
RT

"

315
3(1#35c)d2#2(2d#1)

(13)
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are also shown in the table. The four entries of the table are, respectively,
the j2, j2

R
, j2

RT
values and the percentage error of a frequency calculation based

on j
R
. To facilitate interpreting the validity limits of formula (12), di!erent

shading are applied to the regions corresponding to di!erent percentage error
intervals. Upon inspection of this table one concludes that: (1) Formula (13) can
be reliably used in but a limited parameter region centred about the bottom
right corner of the table. (2) The performance of formula (12) is satisfactory
throughout the parameter space (except a limited region centred about the bottom
left corner of the table) and is always superior, as also noted in reference [4], to that
of formula (13). (3) Formula (12) (whence the used mode shape estimate) falls in
qualitative disaccord with the truth (j2 should monotonically increase when
moving upward and leftward on the table) in the region where a(0)1 (and a'0)9).
(4) Formula (12) can safely be used over the range 0)1)a)0)9 with qualitative
accuracy and a quantitative error of generally less than 0)1% and never higher
than 1%.

3.2. FIXED}FIXED BEAM

Now, the boundary conditions are y
1
(0, t)"y@

1
(0, t)"y

2
(1, t)"y@

2
(1, t)"0 and

the corresponding frequency equation is

2(1!c j ch j)#cj(sj ch aj chbj!sh j c aj c b j#c aj sh aj#c bj shbj

!s aj ch aj!sbj ch bj)"0. (14)

One may easily verify that this equation reduces to that of a bare "xed}"xed beam
when c"0, a"0 or a"1, and that it is invariant under permutation of a and b.
The equation of the static de#ection curve may be shown to be

>M
1
(u)"u2!2u3#u4#4cb2u2[3a!(1#2a)u],

>M
2
(u)"u2!2u3#u4#4ca2(1!u)2[3b!(1#2b)(1!u)] (15)

to within a scaling factor. Substituting equations (15) into equation (8), one
obtains

j4
R
"504

1#60cd2 (1#4cd)
1#6cd2M9#4d#108d2#48cd2[3(1#12d)#140cd2]N

, (16)

which is again equivalent to, but much simpler than its counterpart in reference [4].
The results of the equations (14) and (16) are compared in Table 2 where the
percentage error of the latter is also given. An inspection of this table shows that
although equation (16) loses its qualitative accuracy in the region where a(0)2
(and a'0)8), it can be reliably used in the range 0)2)a)0)8 with always less than
1% of error.
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3.3. FIXED}HINGED BEAM

In the case where the beam of Figure 1 is "xed at A and hinged at B, so that the
boundary conditions are y

1
(0, t)"y@

1
(0, t)"y

2
(1, t)"yA

2
(1, t)"0, the frequency

equation becomes

2(s j ch j!c j sh j)#cj[c aj (sh j s bj!ch j cbj)#ch aj(s j shbj

#c j chbj)!2s bj shbj]"0, (17)



456
L

E
T

T
E

R
S

T
O

T
H

E
E

D
IT

O
R



LETTERS TO THE EDITOR 457
which is equivalent to that given in reference [6] and which reduces to that of a bare
"xed}hinged beam when c"0, a"0 or a"1. The statically de#ected shape is
now

>M
1
(u)"3u2!5u3#2u4#4cu2x3a(a2!3a#2)!(a3!3a2#2)uy ,

>M
2
(u)"3u2!5u3#2u4#4ca2x3u(u2!3u#2)!(u3!3u2#2)ay , (18)

which, when substituted into equation (8) gives

j4
R
"1512

3#40cad[3!2a#2(4!a)cd]

M19!18cadM144a5!576a4#747a3!303a2#12a!38

#8cad[3(24a4!157a3#271a2!124a!16)!70cd2(4!a)2]NN

. (19)

The results of equations (17) and (19) are compared in Table 3. Upon inspection of
this table one concludes that equation (19) can safely be used over the range
0)2)a)0)9 with qualitative accuracy and a quantitative error of at most 1%.

3.4. CANTILEVER BEAM

In this case where the beam of Figure 1 is "xed at A and free at B, the boundary
conditions are y

1
(0, t)"y@

1
(0, t)"yA

2
(1, t)"y@@@

2
(1, t)"0 and the resulting

frequency equation is

2(1#c j ch j)#cj(sh j c aj cbj!s j ch aj chbj#c aj sh aj!cbj shbj

!s aj ch aj#s bj ch bj)"0, (20)

which reduces to that of a bare cantilever when c"0 or a"0 and to that of
a cantilever carrying a tip mass [8] when a"1 (b"0). The statically de#ected
shape is now

>M
1
(u)"6u2!4u3#u4#4cu2(3a!u),

>M
2
(u)"6u2!4u3#u4#4ca2(3u!a) (21)

so that equation (8) gives

j4
R
"756

3#5ca2x6#4(c!1)a#a2y

M182#9ca2M182!84a#315a2!420a3#252a4!72a5#9a6

#4ca2[3(35#35a!35a2#11a3)#140ca2]NN

(22)

which is the same as its counterpart in reference [4]. The results of equations (20)
and (22) are compared in Table 4 where the results of Lord Rayleigh's formula (1)
are also shown (on the last column). It is interesting to note that the accuracy of
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that simple formula is better than that of equation (22) when c*0)5. Upon
inspection of the table, one concludes that equation (22) shows ill qualitative
behaviour in the region where a)0)2 but that it can safely be used with at most 1%
error in the range 0)4)a)1.

4. CONCLUDING REMARKS

It is shown that the Rayleigh formulae (12), (16), (19) and (22) can reliably predict
the fundamental frequencies of the related beam}point mass systems, provided that
they are used in proper parameter ranges. Rather conservative bounds are
proposed here for these ranges. But the practiser may alter them by consulting
Tables 1}4.

It may be supposed that, out of these formulae, especially those of equations (12)
and (16) are simple enough to promote their use.
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