

ON THE FUNDAMENTAL FREQUENCY OF BEAMS CARRYING A POINT MASS: RAYLEIGH APPROXIMATIONS VERSUS EXACT SOLUTIONS

Ö. Turhan

Istanbul Technical University, Faculty of Mechanical Engineering, Gümüşsuyu 80191, Istanbul, Turkey

(Received 21 September 1998, and in final form 29 June 1999)

1. INTRODUCTION

Point mass-beam systems are often used as first approximation models for a variety of structural and machine elements. Hence, one frequently faces the task of determining the natural frequencies of such systems. Although no unsurmountable difficulty arises neither in the determination nor in the solution of the exact frequency equations of these models, there are many situations where more than an approximate knowledge of just the fundamental frequency is hardly necessary. In such cases, approximate formulae obtained by using the Rayleigh method are known to constitute good alternatives. It is, however, also known that the performance of such formulae closely depend on the choice of the substitutes used for the mode shapes of the system in question. Rayleigh himself, when considering the problem of determining the fundamental frequency of a uniform cantilever beam carrying a tip mass, as an illustrative example of his method [1, V.1, p. 289], has used the static deflection curve of the beam acted upon by a concentrated tip load, as a good estimate of the fundamental mode shape (actually the exact one for the limiting case of a massless beam), and derived now is the well-known formula

$$\omega \simeq \sqrt{\frac{\mathrm{EI}}{\mu\ell^4}} \sqrt{\frac{3}{\left[(33/140) + \gamma\right]}},\tag{1}$$

where EI is the flexural rigidity, ℓ the length, μ the mass per unit length of the beam and γ is the ratio of the tip mass to the beam mass. Along the same lines, i.e., applying the Rayleigh method in conjunction with the static deflection curve due to the effect of a concentrated load applied at the location of the point mass, Timoshenko [2] and others have provided the practising engineers with a series of useful formulae corresponding to various beam-point mass configurations. These formulae behave fairly accurately in the cases where the inertial effect of the point mass dominates that of the beam, i.e., when the mass ratio γ is large and the location of the point mass is at or near the maximal amplitude point. But they lose their accuracy with inc r easing inertial contribution of the beam, because so does the used mode shape estimate. On the other hand, in the limiting case of a bare beam, the static deflection curve due to the effect of the beam's own weight is known to constitute a good estimate for the fundamental mode shape. One may therefore infer that static deflection curves corresponding to the combined effect of the beam and point mass weights would constitute better choices for beam-point mass systems as they would provide a certain flexibility in adapting to the fundamental mode shapes in a broader range of the mass ratio γ and of the point mass location. This kind of shape estimate was actually applied by Humar [3] to centrally loaded, simply supported beams and by Low [4] to simply supported, fixed-fixed and cantilever beams carrying an arbitrarily located point mass, and has favourably been compared in reference [4] to three other kinds of shape estimates through a comparison with an existing set of exact solutions. The Rayleigh formulae obtained in reference [4] were, however, rather unwieldy and the problem of determining their validity limits remained.

The purpose of the present note is to reconsider this problem for beams with various classical end conditions and to show that the resulting formulae can be put in reasonably simple forms in the special cases where the beam is symmetrically supported. The corresponding exact frequency equation is also given for each case and the results are compared in a broad range of the relevant parameters so that a clear idea on the validity limits of the formulae follows.

2. THEORETICAL BACKGROUND

Consider an Euler-Bernouilli beam with unspecified end conditions carrying a point mass M (Figure 1). Let the lateral motions of the beam points at the left and right of M be represented by $y_1(u, t)$; $0 \le u \le \alpha$ and $y_2(u, t)$: $\alpha \le u \le 1$ where $u = x/\ell$ and $\alpha = a/\ell$. Both y_1 and y_2 have to obey the partial differential equation

$$\frac{\mathrm{EI}}{\ell^4} \frac{\partial^4 y_i(u,t)}{\partial u^4} + \mu \frac{\partial^2 y_i(u,t)}{\partial t^2} = 0; \quad i = 1, 2.$$

$$\tag{2}$$

Figure 1. Beam-point mass system.

Assuming harmonic motion of the form

$$y_i(u, t) = Y_i(u) \cos \omega t, \quad i = 1, 2, \tag{3}$$

one obtains the general solution

$$Y_{i}(u) = C_{i1} \sin \lambda u + C_{i2} \cos \lambda u + C_{i3} \sin h \lambda u + C_{i4} \cosh \lambda u, \quad i = 1, 2$$
(4)

for the space dependence of the motion, where λ is defined by

$$\omega = \sqrt{\frac{\mathrm{EI}}{\mu\ell^4}}\lambda^2.$$
 (5)

This solution must satisfy two boundary conditions (which may easily be written once the end conditions be specified) for each end, and the four following matching conditions:

$$y_{1}(\alpha, t) = y_{2}(\alpha, t), \qquad y'_{1}(\alpha, t) = y'_{2}(\alpha, t) \qquad y''_{1}(\alpha, t) = y''_{2}(\alpha, t),$$
$$\frac{\mathrm{EI}}{\ell^{3}} [y'''_{1}(\alpha, t) - y'''_{2}(\alpha, t)] - M\ddot{y}_{1,2}(\alpha, t) = 0, \qquad (6)$$

where primes denote differentiation with respect to u and overdots denote differentiation with respect to t. These conditions constitute, for the eight constants C_{ij} of equation (4), a set of eight homogeneous equations, the solvability condition of which yields the exact frequency equation of the system in question.

On the other hand, assuming again harmonic motion of form (3) and forming the ratio of the maximal potential energy to the so-called reference kinetic energy, the Rayleigh quotient of the system may be written

$$R = \frac{\mathrm{EI}}{\mu\ell^4} \lambda_R^4 \tag{7}$$

with

$$\lambda_{R}^{4} = \frac{\int_{0}^{\alpha} Y_{1}^{\prime\prime2}(\xi) d\xi + \int_{\alpha}^{1} Y_{2}^{\prime\prime2}(\xi) d\xi}{\int_{0}^{\alpha} Y_{1}^{2}(\xi) d\xi + \int_{\alpha}^{1} Y_{2}^{2}(\xi) d\xi + \gamma Y_{1,2}^{2}(\alpha)},$$
(8)

where $\gamma = M/\mu \ell$ (ratio of the point mass to the beam mass) and ξ is a dummy variable. As is well known, if good estimates corresponding to the fundamental mode shape are substituted for $Y_1(u)$ and $Y_2(u)$ into equation (8), the Rayleigh quotient of equation (7) approaches (from above) the square of the fundamental frequency, the closeness being warranted by the Rayleigh Principle [1, v.1. p 109] which states in today's terminology, that the Rayleigh quotient (viewed as a function of the shape function constraining the motion) is stationary in value when the shape function equals that of a natural mode. Thus, one has

$$\omega \simeq \sqrt{\frac{\mathrm{EI}}{\mu\ell^4}} \lambda_R^2. \tag{9}$$

3. CASE STUDIES

In this section, exact frequency equations and Rayleigh approximations will be derived for various beam-point mass systems and their results be compared.

3.1. SIMPLY SUPPORTED BEAM

For a simply supported beam the boundary conditions are $y_1(0, t) = y''_1(0, t) = y_2(1, t) = y''_2(1, t) = 0$, which, together with equation (6) yield the frequency equation

$$2s\,\lambda\,\mathrm{sh}\,\lambda + \gamma\lambda(s\,\lambda\,\mathrm{sh}\,\alpha\lambda\,\mathrm{sh}\,\beta\lambda - \mathrm{sh}\,\lambda\,s\,\alpha\lambda\,s\,\beta\lambda) = 0 \tag{10}$$

as also given by Lau [5] and Özkaya *et al.* [6]. Here $\beta = 1 - \alpha$ and the abbreviations s, c, sh, ch are used for sin, cos, sinh, cosh respectively. As can easily be verified, this equation reduces, at it should do, to the well-known frequency equation of a bare simply supported beam when either $\gamma = 0$, $\alpha = 0$ or $\alpha = 1$. On the other hand, it can easily be shown that the statically deflected shape of the same beam acted upon by its own weight and that of the point mass (see for example reference [7]), is given by

$$\bar{Y}_{1}(u) = u - 2u^{3} + u^{4} + 4\gamma\beta\lfloor(1+\beta)\alpha u - u^{3}\rfloor$$
$$\bar{Y}_{2}(u) = u - 2u^{3} + u^{4} + 4\gamma\alpha\lfloor(1+\alpha)\beta(1-u) - (1-u)^{3}\rfloor$$
(11)

to within a constant multiplier. Substituting equation (11) into equation (8) and performing the necessary calculations, one obtains

$$\lambda_{R}^{4} = 3024 \frac{1 + 10\gamma\delta[1 + (1 + 4\gamma)\delta]}{31 + 6\gamma\delta[3[17 + 4\delta(13 + 19\delta + 9\delta^{2})] + 16\gamma\delta[8 + 121\delta + 3(39 + 140\gamma)\delta^{2}]},$$
(12)

where $\delta = \alpha \beta$. Substitution of this value of λ_R into equation (9) gives the approximate Rayleigh formula sought for the fundamental frequency. We note that equation (12) is equivalent to its counterpart in reference [4]. But a much simpler form is achieved here by introducing the variable δ to replace α , this being suggested by the very nature of the problem whose symmetry requires interchangeability of α and $\beta = 1 - \alpha$. Notice that the frequency equation (10) also reflects this feature.

In order to check the accuracy of this formula, the λ_R^2 values calculated from equation (12) are compared in Table 1 with the exact λ^2 values found by numerically solving equation (10), for different values of the parameters γ and α . The λ_{RT}^2 values corresponding to the well-known formula due to Timoshenko [2, p. 39] which, in the terminology of this note gives

$$\lambda_{RT}^4 = \frac{315}{3(1+35\gamma)\delta^2 + 2(2\delta+1)}$$
(13)

L=		, (-) <i>n</i> k , (-)	,	• Biror or ,	$K, = \circ \circ I,$	_ • • • •,•	1
γ\α	0.001	0.01	0.1	0.5	0.3	0.4	0.2
0.001	9·869604	9.869595	9·868662	9·866196	9·86315	9·860689	9·859749
	9·876659	9.876655	9·875743	9·873249	9·870181	9·867724	9·866792
	12·537372	12.426544	11·492047	10·762464	10·286578	10·017749	9·930785
	0·071	0.072	0·072	0·071	0·071	0·071	0·071
0.01	9.869603	9.869507	9.860186	9.835632	9.805553	9·781471	9·772337
	9.876664	9.876623	9.867515	9.842673	9.812381	9·788341	9·77927
	12.537369	12.426262	11.473651	10.714911	10.215324	9·932001	9·840222
	0.072	0.072	0.074	0.072	0.07	0·07	0·071
0.1	9.869595	9.868631	9.776007	9·54102	9·274631	9.078467	9.007819
	9.876713	9.87635	9.786564	9·54796	9·27984	9.084021	9.013681
	12.53734	12.423442	11.29442	10·271632	9·575683	9.180342	9.052691
	0.072	0.078	0.108	0·073	0·056	0.061	0.065
0.25	9.86958	9.86717	9.638107	9.092259	8·540967	8.175939	8.051867
	9.876797	9.8761	9.655786	9.098829	8·54455	8.180058	8.056228
	13.53729	12.418747	11.013506	9.641227	8·733417	8.235155	8.077296
	0.073	0.09	0.183	0.072	0·042	0.05	0.054
0.2	9.869556	9.864736	9.415187	8·447616	7.613939	7.123625	6·96598
	9.876944	9.876223	9.445297	8·453087	7.616165	7.126302	6·968717
	12.537209	12.410933	10.58856	8·807436	7.718413	7.152828	6·978227
	0.075	0.116	0.32	0·065	0.029	0.038	0·039
1	9.869507	9.859869	8.996193	7·454133	6·394693	5.846841	5.679598
	9.877263	9.878305	9.043229	7·457472	6·39582	5.84816	5.680866
	12.537045	12.395349	9.868055	7·634234	6·436777	5.857537	5.683986
	0.079	0.187	0.532	0·045	0·018	0.023	0.022
2	9.86941	9.850138	8·264076	6·172948	5.061681	4·545023	4·393144
	9.877998	9.888507	8·31604	6·174268	5.062124	4·545495	4·393571
	12.536717	12.364355	8·780986	6·238869	5.074386	4·548021	4·394354
	0.087	0.39	0·629	0·021	0.009	0·01	0·01
4	9.869215	9.830692	7·153189	4·817799	3.825118	3·394598	3·270907
	9.879849	9.925039	7·187029	4·818156	3.82525	3·394726	3·271018
	12.538061	12.303061	7·378274	4·83605	3.828191	3·395289	3·271183
	0.108	0.96	0·473	0·007	0.003	0·004	0·003
10	9.86863	9.772477	5·332202	3·259863	2·527936	2·225188	2·139513
	9.888165	10.07354	5·340998	3·259909	2·527956	2·225206	2·139527
	12.534096	12.124504	5·378427	3·262368	2·528319	2·225272	2·139546
	0.198	3.081	0·165	0·001	0	0	0
100	9·859865	8·936876	1.897839	1.077093	0.82215	0.719826	0·691144
	10·218392	9·749675	1.897889	1.077093	0.82215	0.719826	0·691144
	12·504721	10·131107	1.898079	1.077102	0.822152	0.719826	0·691144
	3·636	9·095	0.003	0	0	0	0
1000	9·772391	5.012376	0.607729	0·342154	0·260737	0.228159	0.219036
	11·542111	5.048546	0.607729	0·342154	0·260737	0.228159	0.219036
	12·221899	5.054255	0.607729	0·342154	0·260737	0.228159	0.219036
	18·109	0.722	0	0	0	0	0

Simply supported beam [Entries: (1) λ^2 , (2) λ_R^2 , (3) λ_{RT}^2 , (4) % Error of λ_R^2 , \Box 0–0·1, \Box 0·1–1, \Box > 1]

are also shown in the table. The four entries of the table are, respectively, the λ^2 , λ_R^2 , λ_{RT}^2 values and the percentage error of a frequency calculation based on λ_R . To facilitate interpreting the validity limits of formula (12), different shading are applied to the regions corresponding to different percentage error intervals. Upon inspection of this table one concludes that: (1) Formula (13) can be reliably used in but a limited parameter region centred about the bottom right corner of the table. (2) The performance of formula (12) is satisfactory throughout the parameter space (except a limited region centred about the bottom left corner of the table) and is always superior, as also noted in reference [4], to that of formula (13). (3) Formula (12) (whence the used mode shape estimate) falls in qualitative disaccord with the truth (λ^2 should monotonically increase when moving upward and leftward on the table) in the region where $\alpha < 0.1$ (and $\alpha > 0.9$). (4) Formula (12) can safely be used over the range $0.1 \le \alpha \le 0.9$ with qualitative accuracy and a quantitative error of generally less than 0.1% and never higher than 1%.

3.2. FIXED-FIXED BEAM

Now, the boundary conditions are $y_1(0, t) = y'_1(0, t) = y_2(1, t) = y'_2(1, t) = 0$ and the corresponding frequency equation is

$$2(1 - c\lambda ch\lambda) + \gamma\lambda(s\lambda ch\alpha\lambda ch\beta\lambda - sh\lambda c\alpha\lambda c\beta\lambda + c\alpha\lambda sh\alpha\lambda + c\beta\lambda sh\beta\lambda - s\alpha\lambda ch\alpha\lambda - s\beta\lambda ch\beta\lambda) = 0.$$
(14)

One may easily verify that this equation reduces to that of a bare fixed-fixed beam when $\gamma = 0$, $\alpha = 0$ or $\alpha = 1$, and that it is invariant under permutation of α and β . The equation of the static deflection curve may be shown to be

$$\bar{Y}_1(u) = u^2 - 2u^3 + u^4 + 4\gamma\beta^2 u^2 [3\alpha - (1+2\alpha)u],$$

$$\bar{Y}_2(u) = u^2 - 2u^3 + u^4 + 4\gamma\alpha^2 (1-u)^2 [3\beta - (1+2\beta)(1-u)]$$
(15)

to within a scaling factor. Substituting equations (15) into equation (8), one obtains

$$\lambda_R^4 = 504 \frac{1 + 60\gamma \delta^2 (1 + 4\gamma \delta)}{1 + 6\gamma \delta^2 \{9 + 4\delta + 108\delta^2 + 48\gamma \delta^2 [3(1 + 12\delta) + 140\gamma \delta^2]\}},$$
 (16)

which is again equivalent to, but much simpler than its counterpart in reference [4]. The results of the equations (14) and (16) are compared in Table 2 where the percentage error of the latter is also given. An inspection of this table shows that although equation (16) loses its qualitative accuracy in the region where $\alpha < 0.2$ (and $\alpha > 0.8$), it can be reliably used in the range $0.2 \le \alpha \le 0.8$ with always less than 1% of error.

Fixed-fixed beam [Entries: (1) λ^2 , (2) λ_R^2 , (3) % Error of λ_R^2 , \Box 0-0·1, \Box 0·1-1, \Box > 1]

γ\α	0.001	0.01	0.1	0.2	0.3	0.4	0.5	
0.001	22·373285	22·373285	22·372885	22·368994	22·359855	22·349621	22·345121	
	22·449944	22·449951	22·449817	22·445798	22·436281	22·426	22·421582	
	0·343	0·343	0·344	0·343	0·342	0·342	0·342	
0.01	22·373285	22·373285	22·369283	22·33035	22·239598	22·139542	22·096131	
	22·449945	22·450007	22·448733	22·40848	22·313959	22·213494	22·170823	
	0·343	0·343	0·355	0·35	0·334	0·334	0·338	
0.1	22·373285	22·37328	22·333025	21·942775	21.099603	20·293398	19·979493	
	22·449951	22·450596	22·44362	22·0342	21.1564	20·349271	20·038211	
	0·343	0·346	0·495	0·417	0.269	0·275	0·294	
0.25	22·373285	22·373272	22·271668	21·297051	19·448569	17·985526	17·476082	
	22·449961	22·451666	22·453693	21·403384	19·486415	18·023964	17·515724	
	0·343	0·35	0·817	0·499	0·195	0·214	0·227	
0.5	22·373285	22·373258	22·16682	20·244974	17·286163	15·397744	14·799958	
	22·449978	22·453696	22·501403	20·35089	17·30845	15·420754	14·822216	
	0·343	0·36	1·509	0·523	0·149	0·15	0·15	
1	22·373285	22·373231	21·947429	18·335998	14·40298	12·404729	11.818212	
	22·450014	22·458675	22·615383	18·406004	14·413827	12·415005	11.827329	
	0·343	0·382	3·04	0·382	0·075	0·083	0.077	
2	22·373285	22·373177	21·470762	15·454863	11·284045	9·495895	8·99446	
	22·450089	22·47227	22·593991	15·479388	11·288242	8·499249	8·997223	
	0·343	0·443	5·231	0·159	0·037	0·035	0·031	
4	22·373285	22·373068	20·399196	12·12309	8·453546	7.019395	6.626572	
	22·450255	22·513693	21·524991	12·12833	8·454785	7.020247	6.62724	
	0·344	0·629	5·571	0·043	0·015	0.012	0.01	
10	22·373285	22·372742	16·997361	8·188118	5·54769	4·567376	4·302516	
	22·450881	22·745148	17·330529	8·18866	5·547869	4·567486	4·302599	
	0·347	1·665	1·96	0·007	0·003	0·002	0·002	
100	22·373285	22·367773	6·325314	2·694419	1·795165	1·470188	1·383074	
	22·483195	34·453302	6·326284	2·694421	1·795166	1·470188	1·383074	
	0·491	54·031	0·015	0	0	0	0	
1000	22·37328	22·309169	2·025831	0·855439	0·569009	0·465754	0·438097	
	24·914718	47·494544	2·025831	0·855439	0·569009	0·465754	0·438097	
	11·359	112·892	0	0	0	0	0	

3.3. FIXED-HINGED BEAM

In the case where the beam of Figure 1 is fixed at A and hinged at B, so that the boundary conditions are $y_1(0, t) = y'_1(0, t) = y_2(1, t) = y''_2(1, t) = 0$, the frequency equation becomes

$$2(s \lambda \operatorname{ch} \lambda - c \lambda \operatorname{sh} \lambda) + \gamma \lambda [c \alpha \lambda (\operatorname{sh} \lambda s \beta \lambda - \operatorname{ch} \lambda c \beta \lambda) + \operatorname{ch} \alpha \lambda (s \lambda \operatorname{sh} \beta \lambda + c \lambda \operatorname{ch} \beta \lambda) - 2s \beta \lambda \operatorname{sh} \beta \lambda] = 0, \qquad (17)$$

Fixed-hinged beam (Entries as in Table 2)

γ\α	0.001	0.01	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.99	0.999
0-001	15·418206	15·418206	15·418067	15·416605	15·412657	15·406989	15·402136	15·400761	15·40386	15·409959	15·415812	15·418181	15·418205
	15·451111	15·451114	15·451129	15·4497	15·445562	15·439753	15·434918	15·433595	15·436684	15·442782	15·448704	15·451091	15·451112
	0·213	0·213	0·214	0·215	0·213	0·213	0·213	0·213	0·213	0·213	0·213	0·213	0·213
0.01	15·418206	15·418206	15·416821	15·402189	15·36285	15·306933	15·259619	15·246286	15·276317	15·33615	15·394288	15·417954	15·418203
	15·451112	15·451141	15·451316	15·437011	15·395738	15·338457	15·291321	15·278478	15·308427	15·368243	15·427085	15·450911	15·451114
	0·213	0·214	0·224	0·226	0·214	0·206	0·208	0·211	0·21	0·209	0·213	0·214	0·213
0.1	15·418206	15·418204	15·404319	15·257596	14·87851	14·388621	14·01543	13·914423	14·139973	14·637876	15·180974	15·415693	15·418181
	15·451114	15·451411	15·455518	15·310853	14·910252	14·410653	14·038871	13·940621	14·166268	14·663741	15·214819	15·449303	15·451142
	0·213	0·215	0·332	0·349	0·213	0·153	0·167	0·188	0·186	0·177	0·223	0·218	0·214
0.25	15·418206	15·418201	15·383316	15.015409	14·129332	13·135711	12·46907	12·295879	12.67753	13.622962	14·833853	15·411925	15·418143
	15·451119	15·451889	15·470861	15.099235	14·156677	13·149155	12·484526	12·314404	12.69717	13.641628	14·873334	15·447367	15·451199
	0·213	0·218	0·569	0.558	0·194	0·102	0·124	0·151	0.155	0.137	0·266	0·23	0·214
0-5	15·418206	15·418197	15·347854	14·611404	13·040975	11.586214	10·730146	10.515269	10·980916	12·269039	14·281269	15·405643	15·41808
	15·451127	15·452763	15·514144	14·7329	13·059938	11.593494	10·738971	10.526225	10·993634	12·280806	14·329811	15·446066	15·451318
	0·214	0·224	1·038	0·832	0·145	0.063	0·082	0.104	0·116	0·096	0·34	0·262	0·216
1	15·418206	15·418188	15·275205	13·820332	11·368269	9.609282	8·69768	8·47491	8·948171	10·396389	13·281521	15·393078	15·417954
	15·451143	15·454795	15·63739	13·961795	11·376869	9.612476	8·70147	8·479656	8·954322	10·40222	13·333485	15·449784	15·451649
	0·214	0·237	2·371	1·024	0·076	0.033	0·044	0·056	0·069	0·056	0·391	0·368	0·219
2	15·418206	15·41817	15·122982	12·397541	9·265502	7·520421	6·694206	6·495413	6·910308	8·273318	11.680893	15·367941	15·417703
	15·451176	15·459991	15·887264	12·49575	9·267935	7·521542	6·695418	6·49692	6·912452	8·275548	11.716836	15·476618	15·452677
	0·214	0·271	5·054	0·792	0·026	0·015	0·018	0·023	0·031	0·027	0.308	0·707	0·227
4	15·418206	15·418134	14·791343	10·311649	7·127253	5.63744	4·967031	4·806918	5·136906	6·266963	9·586033	15·317648	15·4172
	15·451247	15·474849	18·017776	10·347138	7·12777	5.637751	4·967337	4·807294	5·137475	6·267622	9·60044	15·574324	15·456125
	0·214	0·368	8·292	0·344	0·007	0.006	0·006	0·008	0·011	0·011	0·15	1·676	0·252
10	15·418206	15·418027	13.626813	7·286102	4·763366	3·70346	3·240812	3·130749	3·355488	4·145886	6·743329	15·16669	15·415692
	15·451501	15·553813	14.562811	7·290805	4·763425	3·703503	3·240851	3·130796	3·355563	4·145983	6·745692	15·905985	15·476336
	0·216	0·881	6.869	0·065	0·001	0·001	0·001	0·002	0·002	0·002	0·035	4·874	0·393
100	15·418206	15·416408	5-99995	2·465188	1·55956	1·199545	1·04512	1.008456	1·082847	1·348811	2·286112	13.029013	15·393062
	15·462336	20·367484	6-005825	2·465202	1·55956	1·199545	1·04512	1.008456	1·082847	1·348811	2·286122	13.955299	16·347986
	0·286	32·116	0-098	0·001	0	0	0	0	0	0	0	7.109	6·204
1000	16·418204	15·39894	1·944114	0·784771	0·494924	0·380259	0·331158	0·319502	0·343135	0·42777	0·728116	6·092207	15·16623
	16·25069	39·74672	1·944132	0·784771	0·494924	0·380259	0·331158	0·319502	0·343135	0·42777	3·728116	6·107266	18·546974
	5·399	158·113	0·001	0	0	0	0	0	0	0	0	0·247	22·291

456

which is equivalent to that given in reference [6] and which reduces to that of a bare fixed-hinged beam when $\gamma = 0$, $\alpha = 0$ or $\alpha = 1$. The statically deflected shape is now

$$\bar{Y}_{1}(u) = 3u^{2} - 5u^{3} + 2u^{4} + 4\gamma u^{2} \lfloor 3\alpha(\alpha^{2} - 3\alpha + 2) - (\alpha^{3} - 3\alpha^{2} + 2)u \rfloor,$$

$$\bar{Y}_{2}(u) = 3u^{2} - 5u^{3} + 2u^{4} + 4\gamma \alpha^{2} \lfloor 3u(u^{2} - 3u + 2) - (u^{3} - 3u^{2} + 2)\alpha \rfloor, \quad (18)$$

which, when substituted into equation (8) gives

$$\lambda_{R}^{4} = 1512 \frac{3 + 40\gamma\alpha\delta[3 - 2\alpha + 2(4 - \alpha)\gamma\delta]}{\{19 - 18\gamma\alpha\delta\{144\alpha^{5} - 576\alpha^{4} + 747\alpha^{3} - 303\alpha^{2} + 12\alpha - 38 + 8\gamma\alpha\delta[3(24\alpha^{4} - 157\alpha^{3} + 271\alpha^{2} - 124\alpha - 16) - 70\gamma\delta^{2}(4 - \alpha)^{2}]\}\}$$
(19)

The results of equations (17) and (19) are compared in Table 3. Upon inspection of this table one concludes that equation (19) can safely be used over the range $0.2 \le \alpha \le 0.9$ with qualitative accuracy and a quantitative error of at most 1%.

3.4. CANTILEVER BEAM

In this case where the beam of Figure 1 is fixed at A and free at B, the boundary conditions are $y_1(0, t) = y'_1(0, t) = y''_2(1, t) = y''_2(1, t) = 0$ and the resulting frequency equation is

$$2(1 + c \lambda ch \lambda) + \gamma \lambda (sh \lambda c \alpha \lambda c \beta \lambda - s \lambda ch \alpha \lambda ch \beta \lambda + c \alpha \lambda sh \alpha \lambda - c \beta \lambda sh \beta \lambda$$
$$- s \alpha \lambda ch \alpha \lambda + s \beta \lambda ch \beta \lambda) = 0, \qquad (20)$$

which reduces to that of a bare cantilever when $\gamma = 0$ or $\alpha = 0$ and to that of a cantilever carrying a tip mass [8] when $\alpha = 1$ ($\beta = 0$). The statically deflected shape is now

$$\bar{Y}_1(u) = 6u^2 - 4u^3 + u^4 + 4\gamma u^2 (3\alpha - u),$$

$$\bar{Y}_2(u) = 6u^2 - 4u^3 + u^4 + 4\gamma \alpha^2 (3u - \alpha)$$
(21)

so that equation (8) gives

$$\lambda_{R}^{4} = 756 \frac{3 + 5\gamma \alpha^{2} \lfloor 6 + 4(\gamma - 1)\alpha + \alpha^{2} \rfloor}{\{182 + 9\gamma \alpha^{2} \{182 - 84\alpha + 315\alpha^{2} - 420\alpha^{3} + 252\alpha^{4} - 72\alpha^{5} + 9\alpha^{6} + 4\gamma \alpha^{2} [3(35 + 35\alpha - 35\alpha^{2} + 11\alpha^{3}) + 140\gamma \alpha^{2}]\}\}$$
(22)

which is the same as its counterpart in reference [4]. The results of equations (20) and (22) are compared in Table 4 where the results of Lord Rayleigh's formula (1) are also shown (on the last column). It is interesting to note that the accuracy of

Cantilever Beam (Entries as Table 2, last column Lord Rayleigh's formula)

γ\α	0.001	0.01	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
0.001	3·516015 3·53009 0·4	3·516015 3·530091 0·4	3.516013 3.530102 0.401	3·515987 3·530097 0·401	3·515884 3·530005 0·402	3·515644 3·529756 0·401	3·515205 3·529291 0·401	3·514521 3·528574 0·4	3·513563 3·527587 0·399	3.51232 3.526331 0.399	3·510797 3·524815 0·399	3.509003 3.52305 0.4	3.559987
0.01	3·516015 3·53009 0·4	3·516015 3·530092 0·4	3·515995 3·530202 0·404	3·515728 3·530155 0·41	3·514706 3·529239 0·413	3·512303 3·526744 0·411	3·507933 3·522114 0·404	3·501151 3·515006 0·396	3·491714 3·505296 0·389	3·479577 3·49303 0·387	3·46484 3·478355 0·39	3·447658 3·461437 0·4	3.494181
0·1	3·516015 3·530091 0·4	3·516015 3·530108 0·401	3·515817 3·531268 0·439	3·513145 3·530941 0·506	3·502941 3·521734 0·536	3·479242 3·496827 0·505	3·43725 3·452132 0·433	3·374899 3·386939 0·357	3·293246 3·303307 0·305	3·195576 3·20483 0·29	3·085916 3·095421 0·308	2·967838 2·978501 0·359	2.989343
0.25	3·516015 3·530091 0·4	3·516015 3·530134 0·402	3·51552 3·53328 0·505	3·508835 3·532966 0·688	3·483423 3·509624 0·752	3·425531 3·447628 0·645	3·3272 3·342443 0·458	3·190552 3·200149 0·301	3·025831 3·03236 0·216	2·845588 2·851079 0·193	2.660222 2.665885 0.213	2·476693 2·483286 0·266	2.485251
0.2	3·516015 3·530091 0·4	3·516015 3·530179 0·403	3.515025 3.537255 0.632	3·501639 3·537873 1·035	3·451156 3·489587 1·114	3·339803 3·367223 0·821	3·162826 3·177346 0·459	2·938862 2·945616 0·23	2·695245 2·69887 0·134	2·453412 2·456185 0·113	2·225379 2·228201 0·127	2·016299 2·01957 0·162	2.019324
1	3·516015 3·530092 0·4	3·516015 3·530273 0·405	3·514032 3·547328 0·947	3·487201 3·550992 1·829	3·38769 3·446831 1·746	3·181884 3·213426 0·991	2·891238 2·902794 0·4	2·571727 2·575423 0·144	2·26652 2·268029 0·067	1·99427 1·995312 0·052	1·758689 1·759722 0·059	1·557298 1·558465 0·075	1.558122
2	3·516015 3·530094 0·4	3·516015 3·530479 0·411	3·512041 3·574501 1·778	3·458162 3·578805 3·489	3·265523 3·346997 2·495	2·913768 2·9419 0·965	2·50111 2·507821 0·268	2·119508 2·120991 0·07	1·799392 1·799864 0·026	1.539222 1.539521 0.019	1·328932 1·329221 0·022	1·158197 1·158513 0·027	1.158384
4	3·516015 3·530098 0·401	3·516014 3·530957 0·425	3·508032 3·647554 3·977	3·399581 3·606303 6·081	3·042437 3·124235 2·689	2·518698 2·535366 0·662	2·033591 2·03627 0·132	1.652684 1.653128 0.027	1·364099 1·364216 0·009	1·14452 1·144591 0·006	0-974887 0-974953 0-007	0·841546 0·841617 0·008	0.841584
10	3·516015 3·530109 0·401	3·516013 3·532922 0·481	3·495797 3·904874 11·702	3·222962 3·48313 8·072	2·535209 2·574702 1·558	1·882124 1·886473 0·231	1·42784 1·428332 0·034	1·119633 1·119697 0·006	0·904123 0·904138 0·002	0·74798 0·747989 0·001	0-631176 0-631184 0-001	0·541375 0·541383 0·001	0.541379
100	3·516015 3·530384 0·409	3·515994 3·648201 3·76	3·275201 3·997535 22·055	1.786952 1.798066 0.622	1.022642 1.023047 0.04	0.674353 0.67438 0.004	0·485676 0·485678 0	0·37069 0·370691 0	0·294714 0·294714 0	0·241491 0·241491 0	0·202527 0·202527 0	0·173001 0·173001 0	0.173001
1000	3·516015 3·543435 0·78	3·515799 7·112216 102·293	1.666299 1.674598 0.498	0-60769 0-607734 0-007	0·332322 0·332323 0	0·216176 0·216176 0	0·154784 0·154784 0	0·117788 0·117788 0	0·093489 0·093489 0	0-076528 0-076528 0	0·064139 0·064139 0	0·054766 0·054766 0	0.054766

that simple formula is better than that of equation (22) when $\gamma \ge 0.5$. Upon inspection of the table, one concludes that equation (22) shows ill qualitative behaviour in the region where $\alpha \le 0.2$ but that it can safely be used with at most 1% error in the range $0.4 \le \alpha \le 1$.

4. CONCLUDING REMARKS

It is shown that the Rayleigh formulae (12), (16), (19) and (22) can reliably predict the fundamental frequencies of the related beam-point mass systems, provided that they are used in proper parameter ranges. Rather conservative bounds are proposed here for these ranges. But the practiser may alter them by consulting Tables 1–4.

It may be supposed that, out of these formulae, especially those of equations (12) and (16) are simple enough to promote their use.

REFERENCES

- 1. J. W. S. RAYLEIGH 1945 The Theory of Sound. New York: Dover, second edition.
- 2. S. TIMOSHENKO, D. H. YOUNG and W. WEAVER, JR. 1974 Vibration Problems in Engineering. New York: Wiley, fourth edition.
- 3. J. L. HUMAR 1990 Dynamics of Structures. Englewood Cliffs, NJ: Prentice-Hall.
- 4. K. H. Low 1997 *Journal of Sound and Vibration* 207, 132–135. A further note on closed-form formulas for fundamental vibration frequency of beams under off-centre load.
- 5. J. H. LAU 1981 *Journal of Sound and Vibration* **78**, 154–157. Fundamental frequency of a constrained beam.
- 6. E. ÖZKAYA, M. PAKDEMIRLI, H. R. ÖZ 1997 *Journal of Sound and Vibration* 199, 679–696. Non-linear vibrations of beam-mass system under different boundary conditions.
- 7. W. FLÜGGE (editor) 1962 Handbook of Engineering Mechanics. New York: McGraw-Hill.
- 8. A. WEIGAND 1962 Einführung in die Berechnung Mechanischer Schwingungen. Band 3, Schwingungen Fester Kontinua. Leipzig: Veb Fachbuchverlag.